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(57) ABSTRACT

A method for rolling back speculative threads in symmetric-
multiprocessing (SMP) environments is disclosed. In one
embodiment, such a method includes detecting an aborted
thread at runtime and determining whether the aborted thread
is an oldest aborted thread. In the event the aborted thread is
the oldest aborted thread, the method sets a high-priority
request for allocation to an absolute thread number associated
with the oldest aborted thread. The method further detects
that the high-priority request is set and, in response, modifies
a local allocation token of the oldest aborted thread. The
modification prompts the oldest aborted thread to retry a work
unit associated with its absolute thread number. The oldest
aborted thread subsequently initiates the retry of a successor
thread by updating the successor thread’s local allocation
token. A corresponding apparatus and computer program
product are also disclosed.
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1
EFFICIENT ROLLBACK AND RETRY OF
CONFLICTED SPECULATIVE THREADS
USING DISTRIBUTED TOKENS

BACKGROUND

1. Field of the Invention

This invention relates to apparatus and methods for effi-
ciently rolling back and retrying conflicted speculative
threads in SMP environments using distributed tokens.

2. Background of the Invention

Speculative execution (SE), also known as thread-level
speculation (TLS), requires in-order start, as well as in-order
commit of threads. The workload is typically split into a
sequence of work units, referred to as absolute thread num-
bers (ATNs), that are assigned to a group of n threads, in
sequence. A complete round of allocation assigns work units
to threads Ty, Ty, ..., T, 5, T, ;. By dispatching the threads
in order, and committing them in order, program semantics
are preserved.

The manner in which current SMP systems perform specu-
lative execution is inefficient and difficult to debug. For
example, current SMP systems require the kernel to track the
number of conflict events (i.e., events causing threads to
abort). When the number of conflict events reaches a thresh-
old, the kernel modifies a global variable, referred to herein as
an “allocation token,” to initiate retries of the aborted threads.
Threads operating in user space also need to update the allo-
cation token. As a result, a lock is required to protect the
allocation token. Implementing a lock that is shared between
the kernel and the SMP runtime makes the design both inef-
ficient as well as difficult to debug. For example, a sequence
of code used to start speculation is shown below. A similar
locking sequence is also present in the decision code.

while {
lock allocation__token;
if (allocation_ token == thread’s ATN)
proceed to obtain speclD;
else
unlock allocation__token;
continue;

In view of the foregoing, what are needed are apparatus and
methods to more efficiently roll back and retry conflicted
speculative threads in SMP environments. Ideally, such appa-
ratus and methods will remove the locking requirement asso-
ciated with the allocation token.

SUMMARY

The invention has been developed in response to the
present state of the art and, in particular, in response to the
problems and needs in the art that have not yet been fully
solved by currently available apparatus and methods. Accord-
ingly, apparatus and methods have been developed to more
efficiently roll back speculative threads in symmetric-multi-
processing (SMP) environments. The features and advan-
tages of the invention will become more fully apparent from
the following description and appended claims, or may be
learned by practice of the invention as set forth hereinafter.

Consistent with the foregoing, a method for rolling back
speculative threads in symmetric-multiprocessing (SMP)
environments is disclosed herein. In one embodiment, such a
method includes detecting an aborted thread at runtime and
determining whether the aborted thread is an oldest aborted
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thread. In the event the aborted thread is the oldest aborted
thread, the method sets a high-priority request for allocation
to an absolute thread number associated with the oldest
aborted thread. The method further detects that the high-
priority request is set and, in response, modifies a local allo-
cation token of the oldest aborted thread. The modification
prompts the oldest aborted thread to retry a work unit asso-
ciated with its absolute thread number.

A corresponding apparatus and computer program product
are also disclosed and claimed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments illustrated in the appended drawings.
Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:

FIG. 1 is a high-level block diagram showing one example
of'a computing system in which an apparatus and method in
accordance with the invention may be implemented;

FIG. 2 is a high-level block diagram showing one example
of'a computing system (i.e., hardware platform) configured to
perform symmetric multiprocessing (SMP);

FIG. 3 is a high-level block diagram showing one embodi-
ment of an SMP runtime in accordance with the invention,
running on top of an operating system and hardware platform;

FIG. 4 is a high-level block diagram showing various
threads progressing through an in-order-start phase of the
SMP runtime illustrated in FIG. 3;

FIG. 51is ahigh-level block diagram showing an example of
a thread that aborts after progressing through the in-order-
start phase of the SMP runtime illustrated in FIG. 3;

FIG. 6 is a state diagram showing operation of the SMP
runtime illustrated in FIG. 3;

FIG. 7 is a high-level block diagram showing another
embodiment of an SMP runtime in accordance with the
invention;

FIG. 8 is a state diagram showing operation of the SMP
runtime illustrated in FIG. 7; and

FIG. 9 is a process flow diagram showing various condi-
tions implemented at the “wait start” state of FIG. 8, including
a breakout condition.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the Figures, is not intended to limit the scope of
the invention, as claimed, but is merely representative of
certain examples of presently contemplated embodiments in
accordance with the invention. The presently described
embodiments will be best understood by reference to the
drawings, wherein like parts are designated by like numerals
throughout.

As will be appreciated by one skilled in the art, the present
invention may be embodied as an apparatus, system, method,
or computer program product. Furthermore, the present
invention may take the form of a hardware embodiment, a
software embodiment (including firmware, resident software,
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microcode, etc.) configured to operate hardware, or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “module” or
“system.” Furthermore, the present invention may take the
form of a computer-usable storage medium embodied in any
tangible medium of expression having computer-usable pro-
gram code stored therein.

Any combination of one or more computer-usable or com-
puter-readable storage medium(s) may be utilized to store the
computer program product. The computer-usable or com-
puter-readable storage medium may be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device.
More specific examples (a non-exhaustive list) of the com-
puter-readable storage medium may include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), a por-
table compact disc read-only memory (CDROM), an optical
storage device, or a magnetic storage device. In the context of
this document, a computer-usable or computer-readable stor-
age medium may be any medium that can contain, store, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object-oriented
programming language such as Java, Smalltalk, C++, or the
like, conventional procedural programming languages such
as the “C” programming language, scripting languages such
as JavaScript, or similar programming languages. Computer
program code for implementing the invention may also be
written in a low-level programming language such as assem-
bly language.

Embodiments of the invention may be described below
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus, systems, and computer pro-
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, may be implemented by computer program
instructions or code. These computer program instructions
may be provided to a processor of a general-purpose com-
puter, special-purpose computer, or other programmable data
processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be stored in a
computer-readable storage medium that can direct a com-
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable storage medium produce an
article of manufacture including instruction means which
implement the function/act specified in the flowchart and/or
block diagram block or blocks. The computer program
instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of
operational steps to be performed on the computer or other
programmable apparatus to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
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Referring to FIG. 1, one example of a computing system
100 is illustrated. The computing system 100 is presented to
show one example of an environment where an apparatus and
method in accordance with the invention may be imple-
mented. The computing system 100 is presented only by way
of example and is not intended to be limiting. Indeed, the
apparatus and methods disclosed herein may be applicable to
a wide variety of different computing systems in addition to
the computing system 100 shown. The apparatus and meth-
ods disclosed herein may also potentially be distributed
across multiple computing systems 100.

As shown, the computing system 100 includes at least one
processor 102 and may include more than one processor 102.
The processor 102 may be operably connected to a memory
104. The memory 104 may include one or more non-volatile
storage devices such as hard drives 104a, solid state drives
104a, CD-ROM drives 104a, DVD-ROM drives 104a, tape
drives 104a, or the like. The memory 104 may also include
non-volatile memory such as a read-only memory 1044 (e.g.,
ROM, EPROM, EEPROM, and/or Flash ROM) or volatile
memory such as a random access memory 104¢ (RAM or
operational memory). A bus 106, or plurality of buses 106,
may interconnect the processor 102, memory devices 104,
and other devices to enable data and/or instructions to pass
therebetween.

To enable communication with external systems or
devices, the computing system 100 may include one or more
ports 108. Such ports 108 may be embodied as wired ports
108 (e.g., USB ports, serial ports, Firewire ports, SCSI ports,
parallel ports, etc.) or wireless ports 108 (e.g., Bluetooth,
IrDA, etc.). The ports 108 may enable communication with
one or more input devices 110 (e.g., keyboards, mice, touch-
screens, cameras, microphones, scanners, storage devices,
etc.) and output devices 112 (e.g., displays, monitors, speak-
ers, printers, storage devices, etc.). The ports 108 may also
enable communication with other computing systems 100.

In certain embodiments, the computing system 100
includes a network adapter 114 to connect the computing
system 100 to a network 116, such as a LAN, WAN, or the
Internet. Such a network 116 may enable the computing sys-
tem 100 to connect to one or more servers 118, workstations
120, personal computers 120, mobile computing devices, or
other devices. The network 116 may also enable the comput-
ing system 100 to connect to another network by way of a
router 122 or other device 122. Such a router 122 may allow
the computing system 100 to communicate with servers,
workstations, personal computers, or other devices located on
different networks.

Referring to FIG. 2, one example of a computing system
100 configured for symmetric multiprocessing (SMP) is illus-
trated. As shown, the SMP computing system 100 (also called
a symmetric multiprocessor 100 or symmetric multiproces-
sor system 100) includes multiple processors 102a-c con-
nected to a single shared memory 104¢ and controlled by a
single operating system (OS) instance. The processors 102a-¢
may be interconnected using buses 106, crossbar switches,
on-chip mesh networks, or the like. The SMP computing
system 100 may allow any processor 102a-c to work on any
task no matter where data for that task is located in memory
104¢, provided that each task in the system 100 is not
executed by multiple processors 102a-c¢ at the same time.
With proper operating system support, the SMP computing
system 100 may move tasks between processors 102a-c to
balance the workload. In certain embodiments, each proces-
sor 102 in the SMP computing system 100 may have its own
local level-one (I.1) cache 2004a-c to speed up data access and
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reduce traffic on the system bus 106. The processors 102a-c¢
may also share a level-two (L.2) cache 202.

Referring to FIG. 3, in certain embodiments, an SMP com-
puting system 100 in accordance with the invention includes
a hardware platform 300 (i.e., processors 102a-c, bus 106,
caches 200a-c, 202, memory 104c¢, etc.). An operating system
302 supporting symmetric multiprocessing (SMP) may run
on top of the hardware platform 300 and an SMP runtime 304
may run on top of the operating system 302. As illustrated in
FIG. 3, the SMP runtime 304 uses various global variables
306, 308, 310 to roll back and retry conflicted threads in a
symmetric-multiprocessing (SMP) environment. These vari-
ables include one or more of an allocation token 306, a high-
priority (i.e., “Hipri”) request 308, and a commit token 310.
The manner in which the SMP runtime 304 uses these vari-
ables 306, 308, 310 will be discussed in more detail hereafter.
As will be shown hereafter, these variables 306, 308,310 may
be used by the SMP runtime 304 in such a manner as to
eliminate the need to lock the allocation token 306. That is,
the SMP runtime 304 uses the variables 306, 308, 310 in such
a way as to eliminate the need to implement a shared lock
between the kernel (i.e., operating system 302) and the SMP
runtime 304.

Referring to FIG. 4, as previously mentioned, speculative
execution (SE), also known as thread-level speculation
(TLS), requires in-order start, as well as in-order commit of
threads. The workload is typically split into a sequence of
work units, referred to as absolute thread numbers (ATNs),
which are assigned to a team of n threads, in sequence. A
complete round of allocation assigns work units to threads T,
T,,..., T, T, . By dispatching the threads in order, and
committing them in order, program semantics may be pre-
served.

In order to ensure that parallelized code generates the same
output that it would if it were executed serially, namely by a
single thread, the following criteria must be met: In a scenario
where two threads a and b are waiting for a speculation
identifier (referred to herein as a “specID”), and the threads
have been assigned work units with ATN values x and y
respectively, if X<y, then thread a should receive a speclD that
is younger than thread b. Furthermore, where threads have
consecutive ATNs, there should be no gap between the spec-
1Ds assigned to the threads.

FIG. 4 is a high-level block diagram showing multiple
threads T,, T,, T,, and T; progressing through an in-order-
start phase 400 of the SMP runtime 304. Under a normal
operating mode, a thread-selection phase assigns each thread
aunique ATN value. FIG. 4 shows a scenario where the thread
selection phase has assigned fours threads T,, T,, T,, and T,
work units having ATNs 0, 1, 2, and 3, respectively. A global
counter, namely the allocation token 306 previously dis-
cussed, is used to start the threads in the order of their ATN
values. In the illustrated example, the allocation token 306 is
initialized to zero to allow the thread having ATN=0 to start.

Each thread, after receiving a work unit associated with a
particular ATN, proceeds to the in-order-start phase illus-
trated in FIG. 4. As shown, the in-order-start phase 400
includes an allocation-token-polling stage 402, an allocation
stage 404, and an allocation-token-incrementing stage 406.
During the allocation-token-polling stage 402, each thread
polls the allocation token 306 and waits for its turn to receive
a specID. When the allocation token 306 equals a thread’s
ATN value, the thread proceeds to the allocation stage 404.
During the allocation stage 404, the thread is allocated a
hardware specID. After receiving a speclD, the thread pro-
ceeds to the allocation-token-incrementing stage 406, which
increments the allocation token 306 by one to allow the next
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thread to proceed through the in-order-start phase 400. Using
this protocol, only a single thread passes through the alloca-
tion stage 404 at any given time.

Referring to FIG. 5, complication of the above protocol
arises in situations where a thread is rolled back and needs to
retry its work unit, such as in cases where a thread aborts due
to a conflict. In a rollback scenario, a thread which was
previously allocated a specID aborts while performing its
work unit and returns to the in-order-start phase 400 in order
to receive a new speclD. Note that such a thread still has the
same ATN it had prior to aborting. However, by the time the
thread aborts, the allocation token 306 will have incremented
above the thread’s ATN value. Furthermore, by the time the
thread aborts, other threads with larger ATNs may have
already proceeded through the in-order-start phase and
received specIDs. FIG. 5 shows such a scenario.

As shown in FIG. 5, after proceeding through the in-order-
start phase 400, a thread T, processes its work unit while in
the work-unit-processing phase 502. Upon completing its
work unit, T, proceeds to an in-order-commit phase, where it
waits for a global counter (i.e., the commit token 310 previ-
ously discussed) to equal its ATN. When the commit token
310 equals its ATN, T, commits the work that was performed
in the work-unit-processing phase 502.

Assume that a second thread T has proceeded through the
in-order-start phase 400 and is processing its work unit in the
work-unit-processing phase 502 when it aborts due to a con-
flict or other problem. Further assume that at the time T,
aborts, T, has already proceeded through the in-order-start
phase 400 and received a specID. Assume that thread T, has
incremented the allocation token 306 to three, thereby allow-
ing thread T; to begin proceeding through the in-order-start
phase 400. When thread T, aborts, thread T, returns to the
in-order-start phase 400 in order to retry its work unit. The
ATN value assigned to thread T, remains unchanged.

Because the allocation token 306 has incremented above
the ATN of thread T, by the time T, returns to the in-order-
start phase 400, thread T, will not get a chance to retry its
work unit under a normal operating mode. That is, the allo-
cation token 306 will never equal T,’s ATN, thereby prevent-
ing T, from re-proceeding through the in-order-start phase
400. Simply resetting the allocation token 306 to the ATN of
T,, thereby allowing T, to once again proceed through the
in-order-start phase 400, may create a race on the allocation
token 306 (i.e., a race may be created between the aborted
thread attempting to retry its work unit and the thread cur-
rently passing through the in-order-start phase 400, each of
which may attempt to update the allocation token 306). Such
a scenario may lead to program hangs.

In order to eliminate the race condition discussed above,
the oldest aborted thread may set the high-priority request
variable 308 previously discussed instead of modifying the
allocation token 306 directly. The high-priority request 308
may identify the oldest aborted thread’s ATN and indicate
that the oldest aborted thread wishes to reenter the allocation
stage 404 and receive a new speclD, thereby allowing the
oldest aborted thread to retry its work unit. A younger thread
whose ATN is equal to the allocation token 306 will, upon
entering the allocation-token-polling stage 402, detect that
the high-priority request 308 is set. The younger thread may
then set the allocation token 306 equal to the ATN identified
in the high-priority request 308. This will allow the oldest
aborted thread to re-proceed through the in-order-start phase
400 and receive a new specID. This methodology will be
discussed in more detail in association with FIG. 6.

Referring to FIG. 6, a state diagram 600 showing the opera-
tion of the SMP runtime when rolling back and retrying
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conflicted (i.e., aborted) threads is illustrated. For the sake of
example, the state diagram 600 will be discussed in associa-
tion with a set of threads Ty, T;, T,, and T;. Assume that the
thread T, is initially assigned 602 a work unit having ATN=0,
after which the thread waits at step 604 by polling the allo-
cation token 306. When the thread T, detects that the alloca-
tion token 306 equals the thread’s ATN, the thread T, checks
the high-priority request 308 for allocation. Assuming the
high-priority request 308 is not set, the thread T, receives 610
a specID and updates 612 the allocation token 306 (i.e.,
increments the allocation token 306 to allow the next thread
T, (ATN=1) to enter the in-order-start phase 400 and receive
a speclD).

Once the thread T, updates 612 the allocation token 306,
the thread T, begins processing 614 its work unit. Assuming
the thread T, finishes its work unit, the thread T, waits 616 to
commit 618 (i.e., make permanent) the work unit. Waiting
616 may include waiting 616 for a commit token 310 to equal
the thread’s ATN, thereby authorizing the thread T, to commit
618 its work unit. Alternatively, the thread T, may experience
a conflict while processing 614 its work unit that may cause a
hardware interrupt to be generated and sent to the kernel 624.
Insuchacase, the thread T, may proceed to step 626 and wait
to abort. Waiting 626 to abort may include waiting 626 for a
commit token 310 to equal the thread’s ATN so that the thread
T, may abort and return to step 604, where it may waitto retry
its work unit. If the commit token 310 increments to equal the
thread’s ATN, thereby allowing it to abort, the thread T, will
know that it is the oldest aborted thread. That is, the thread T,
will know that threads having ATNs lower than thread T,’s
ATN will have successfully committed since the commit
token 310 was incremented to equal thread T,,’s ATN. For the
purposes of this specification, the “oldest aborted thread” is
defined to be the aborted thread whose ATN is equal to the
commit token 310. This is important since only the oldest
aborted thread is allowed to set the high-priority request 308.
Where thread T, is the oldest aborted thread, thread T, will set
620 the high-priority request 308 for allocation to equal its
ATN and returnto step 604, where it may wait to retry its work
unit.

On the other hand, if thread T, completes its work unit
without experiencing a conflict, the thread T, may proceed to
step 616 where it may wait for the commit token 310 to equal
its ATN and thereby receive authorization to commit 618 its
work unit. If the commit token 310 equals thread T,’s ATN
and the thread T, is able to successfully commit its work unit,
the thread T, may update (i.e., increment) the commit token
310 and return to step 602, where it may receive a new ATN
and associated work unit. The thread T, may then proceed
through the state diagram 600 with a new work unit in the
manner previously described.

On the other hand, if the commit token 310 equals thread
Ty s ATN but the thread T, is not able to successfully commit
its work unit, the thread T, may set the high-priority request
308 for allocation to equal its ATN. As previously mentioned,
setting the high-priority request 308 may indicate that the
thread T, wishes to retry its work unit and thus would like the
allocation token 306 to be decremented to equal its ATN. The
thread T, may then return to step 604 to wait to retry its work
unit.

When an oldest aborted thread aborts and sets the high-
priority request 308, all threads younger than the oldest
aborted thread will also abort (if they haven’t already) and
return to step 604, since these threads will need to restart and
commit sequentially. For example, assume that thread T,
aborts at step 616 or step 626 and sets 620 the high-priority
request 308. Further assume that at the time thread T, aborts
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8

and sets the high-priority request 308, younger threads T,
(ATN=1) and T, (ATN=2) have already passed through the
in-order-start phase 400 and have received specIDs, thereby
allowing them to process their work units. Further assume
that thread T, (ATN=3) is waiting at step 604 to enter the
in-order-start phase 400. When the allocation token 306 is
incremented to 3, thread T, will enter the in-order-start phase
400 and check 606 the high-priority request 308 for alloca-
tion. In this example, thread T, will see that the high-priority
request 308 is set to the ATN of thread T,,. Upon making this
observation, thread T, will lower 608 the allocation token to
0(i.e.,the ATN of T,), clear 608 the high-priority request 308,
and return to step 604. When the allocation token 306 is
lowered to 0, thread T, (which is waiting at step 604) will
detect that its ATN is equal to the allocation token 306 and
reenter the in-order-start phase 400, thereby receiving a new
speclD.

When the allocation token 306 is lowered to O, threads T,
and T,, which have already previously passed through the
in-order-start phase 400 and received specIDs, will either be
processing 614 their work units, waiting at step 616 to com-
mit their work units, or waiting at step 626 to abort their work
units. Upon aborting and setting the high-priority request
308, thread T, may invalidate the specIDs of these threads.
This will cause hardware interrupts to be generated for
threads T, and T, thereby rolling back threads T, and T, to
the beginning of the in-order-start phase 400 (i.e., step 604).
These threads will then retry in order as the allocation token
306 is incremented above 0. Alternatively, threads T, and T,
may be configured to detect when the allocation token 306 is
lower than their ATNs and, in response, return to step 604 to
retry their work units.

The illustrated method 600 has the benefit that since only
one thread can be passing through the in-order-start phase 400
at any one time, there is no need to lock the allocation token
306. Only the thread that is passing through the in-order-start
phase 400 can modify the allocation token 306. The thread
that is passing through the in-order-start phase 400 will either
increment the allocation token 306 or, if the high-priority
request 308 is set, set the allocation token 306 to the ATN
value identified in the high-priority request 308. This elimi-
nates the need for a shared lock and prevents races on the
allocation token 306. In the event a thread is the oldest aborted
thread and all other threads have already proceeded through
the in-order-start phase 400, the oldest aborted thread may in
this instance be allowed to modify the allocation token 306 to
equal its ATN, and thereby retry its work unit.

The disclosed technique leads to significant performance
improvement and is much easier to debug. This is because the
kernel may be kept minimalistic by leaving the invalidation of
younger threads to the SMP runtime 304.

In certain embodiments, to minimize the number of spec-
IDs that are allocated, the SMP runtime 304 may be config-
ured to run the oldest thread non-speculatively. The oldest
thread may have the privilege of modifying the main memory
104¢ directly, instead of buffering in the 1.2 cache 202. At any
given time, only a single thread may be allowed to run non-
speculatively. A thread, which is already running specula-
tively, or is about to run speculatively because it has already
obtained a specID, may not switch to run non-speculatively
even if it becomes the oldest thread. This is because the
decision to run non-speculatively may be made inside the
allocation stage 404 and may not be changed at a later time.

Referring generally to FIGS. 7 through 9, in certain
embodiments, the SMP runtime 304 discussed in association
with FIGS. 3 through 6 may be modified to minimize memory
traffic. The SMP runtime 304 discussed in associated with
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FIGS. 3 through 6 uses global tokens 306, 310 to implement
a static scheduling scheme. The scheduling scheme is static in
that the order of execution of threads is known—i.e., each
thread has a fixed predecessor and successor thread. That is, if
a thread executes a work unit having an ATN, the next thread
will execute a work unit having the ATN+1. Using global
tokens to coordinate the execution of such threads, although
functional, may not be optimal or necessary in all computing
architectures.

For example, in an SMP computing system 100 such as that
illustrated in FIG. 2, each processor core 102a-c shares the
same [.2 cache 202. Each processor core 102 supports a given
number N (e.g., 4) of hardware threads, with each hardware
thread of a particular core 102 sharing the core’s L1 cache
200. Once a thread on a core 102 posts a global token 306,
310, the threads on the other cores 102 who are polling the
token 306, 310 will have their local (L.1-cached) copy of the
token 306, 310 invalidated. The threads would then all suffer
an L1 miss at about the same time, thereby causing a surge of
traffic to the L2 cache 202 to fetch the updated token 306, 310.

In certain embodiments, the SMP runtime 304 may be
designed to avoid or minimize such traffic surges, particularly
in situations where the order in which threads will execute is
clear. In the present application, the order of allocation is
known and only a single hardware thread (i.e., the next hard-
ware thread) and core 102 needs to know when a token is
updated so that it can be allocated a specID. FIGS. 7 through
9 disclose an alternative embodiment of an SMP runtime 304
that avoids or minimizes the traffic surges discussed above.
This embodiment utilizes distributed tokens to ensure in-
order start, as well as in-order commit of threads, while still
eliminating or minimizing locking requirements used in con-
ventional implementations. This embodiment, instead of
using a single global allocation token 306 and single global
commit token 310 for all hardware threads, uses a local allo-
cation token 702 and a local commit token 706 for each thread
700. That is, each thread 700 has its own allocation token 702
and commit token 706. The manner in which the tokens are
used will be described in more detail hereafter.

The distributed-token scheme disclosed in association with
FIGS. 7 through 9 significantly improves performance. For
example, consider a worse case scenario on a sixteen-core
Blue Gene/Q processor, where each core has four hardware
threads, using the scheme disclosed in FIGS. 3 through 6.
Assuming a thread on core 0 posts a token, and a thread on
core 15 is the successor, an invalidated L1 copy of the global
token for the thread on core 15 would take (4 cyclesx14) to
become updated. This assumes that cores 1 through 14
request the updated global token prior to core 15.

On average for the Blue Gene/QQ processor, if a request
from a successor thread is 7 cores away from its predecessor
thread, the average latency for updating the global token is
7x4 cycles. By contrast, using the distributed-token scheme
described in FIGS. 7 through 9, the latency to observe an
updated token is reduced from an average of 28 cycles to 4
cycles. Such latency reduction may be observed for both the
allocation token and the commit token. The distributed-to-
kens approach disclosed in FIGS. 7 through 9 is a natural
extension of the global-tokens approach disclosed in FIGS. 3
through 6.

FIG. 7 shows one embodiment of an SMP runtime 304 that
uses a distributed-tokens approach for ensuring in-order start,
as well as in-order commit of threads 700a-c. As shown, using
a distributed-tokens approach, each thread 700 is assigned its
own local allocation token 702 and commit token 706. In
addition, each thread 700 is assigned a previous local alloca-
tion token 704, an “abort” flag 708, an “oldest abort” flag 710,
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and a “younger threads killed” (YTK) flag 712. These tokens
702,704,706 and flags 708, 710, 712 are presented by way of
example and not limitation. The manner in which these tokens
and flags are used will be described in more detail hereafter.
In this particular embodiment, the SMP runtime 304 also uses
a global high-priority (“hipri”) request 714 and global thresh-
old value 716. The threshold value 716 may be set to any value
greater than the number of threads in the SMP computing
system 100.

Referring to FIG. 8, a state diagram 800 showing operation
of'an SMP runtime 304 using a distributed-tokens approach is
illustrated. The state diagram 800 is based on the same static
scheduling scheme as the state diagram 600 of FIG. 6. In the
state diagram 600 of FIG. 6, the global allocation token 306
may take on values ranging from O to the number of ATNs
minus one. By contrast, in the state diagram 800 of FIG. 8, a
thread’s local allocation token 702 is always increasing, even
under rollback circumstances. Furthermore, unlike the state
diagram 600 of FIG. 6, a thread’s local allocation token 702 is
not compared to its ATN. Instead, the thread’s local allocation
token 702 is compared to its previous local allocation token
704, as will be explained in more detail hereafter. In short, a
thread will receive a specID when the difference between the
thread’s local allocation token 702 and its previous local
allocation token 704 is non-zero.

As shown in FIG. 8, a “wait to start” state 806 is used to
synchronize both fresh start threads (i.e., threads that have not
been aborted) and rollback threads (i.e., threads that have
been aborted). Because the “wait to start” state 806 manages
both fresh start threads and rollback threads, conditions for
breaking out of the “wait to start” state 806 are substantially
more complex than the conditions needed to break out of the
“wait to start” state 604 described in FIG. 6. Conditions for
breaking out of the “wait to start” state 806 are described
below in association with FIG. 9.

Referring to FIG. 9, while continuing to refer generally to
FIG. 8, a process flow diagram showing a method 900
executed by a thread at the “wait to start” state 806 is illus-
trated. As shown, at the “wait to start” state 806, a thread
initially checks 902 whether its “abort” flag 708 is set (indi-
cating that the thread is a rollback thread as opposed to a fresh
start thread) and whether its commit token 706 is equal to its
ATN (indicating, if it is a rollback thread, that it is the oldest
aborted thread). If both conditions are true, the thread sets 904
its “oldest abort” flag 710 (indicating that the thread is the
oldest aborted thread) and proceeds to step 906. If the thread
determines that one or more of the conditions at step 902 are
not true, the thread proceeds directly to step 906.

At step 906, the thread checks whether its “oldest abort”
flag 710 is set and whether the high-priority request 714 is set
to -1 (in this disclosure, a value of -1 indicates that the
high-priority request 714 is not set—i.e., no thread is request-
ing allocation). If both conditions are true, the thread sets the
high-priority request 714 to its hardware thread ID and pro-
ceeds to step 910. If one or more of the conditions at step 906
are not true, the thread proceeds directly to step 910.

At step 910, the thread checks whether its “oldest abort”
flag 710 is set (indicating that it is the oldest aborted thread)
and whether its “younger threads killed” (YTK) flag is not set
(indicating that threads younger than the oldest aborted
thread have not yet been “killed”, or invalidated). If both
conditions are true, the thread (i.e., the oldest aborted thread)
invalidates 912 the spec IDs (i.e., “kills”) all threads younger
than itself. The thread then sets 912 its YTK flag 712 to
indicate that all younger threads have been killed. The thread
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then proceeds to step 914. If either of the conditions at step
910 are evaluated not to be true, the thread proceeds directly
to step 914.

Step 914 is referred to herein as the “breakout condition.”
That is, if a thread satisfies the conditions specified in step
914, the thread is allowed to break out of the “wait to start”
state 806 and proceed to other steps of the state diagram 800.
As mentioned above, the breakout condition 914 is somewhat
complex because the breakout condition 914 is designed to
synchronize both fresh start threads and rollback threads. As
shown in the breakout condition 914 of FIG. 9, if a thread’s
local allocation token 702 is not equal to its previous local
allocation token 704 and the thread’s “abort” flag 708 is not
set or the thread’s “oldest abort” flag 710 is set, or the thread’s
local allocation token 702 minus its previous local allocation
token 704 is greater than the threshold value 716 previously
discussed, then the thread sets 916 its previous local alloca-
tion token 704 to the current value of its local allocation token
702 and breaks out 916 of the “wait to start” state 806.
Otherwise, the thread remains in the “wait to start” state 806
and proceeds back to the top of the method 900 to repeat the
method steps.

Referring again to FIG. 8, a scenario involving a fresh start
thread (not a rollback thread) will now be discussed as it
relates to the state diagram 800. In general, a fresh start thread
will begin at start state 802 (if it has not yet processed a work
unit) or at step 834 (if it has already successfully processed a
work unit). The fresh start thread will then receive a work unit
and associated ATN at step 804 and proceed to the “wait to
start” state 806. If there is no work available, the fresh start
thread moves to the end state 805. At the “wait to start” state
806, the fresh start thread loops until its local allocation token
702 differs with respect to its previous local allocation token
704 (thereby satisfying the breakout condition 914). When
the breakout condition 914 is satisfied, the thread sets its
previous local allocation token 704 to the current value of its
local allocation token 702 (effectively capturing the current
value of the thread’s local allocation token 702) and breaks
out of the “wait to start” state 806. The fresh start thread then
proceeds to step 808, where the thread determines whether
the high-priority request 714 is set to —1. For the purposes of
this disclosure, a high-priority request 714 that is set to -1
indicates that no thread has rolled back (i.e., aborted) and is
requesting a specID. By contrast, a high-priority request 714
that is set to a value other than -1 indicates that a thread has
rolled back and is requesting a specID.

Assume that the high-priority request 714 is set to -1 (i.e.,
no rollback thread). In such a case, the fresh start thread
proceeds to step 816 to receive a specID. The fresh start thread
then proceeds to step 818. Since the thread in this example is
not an oldest aborted thread, the fresh start thread proceeds to
set 820 the local allocation token 702 of the next thread to the
local allocation token 702 of the fresh start thread plus one.
This will create a non-zero difference between the next
thread’s local allocation token 702 and its previous local
allocation token 704, thereby allowing it to break out of the
“wait to start” state 806 and receive a specID. In this way, each
thread that receives a specID may cause the next thread to
break out of the “wait to start” state 806 and receive a speclD,
thereby ensuring that threads start in order.

At step 824, the fresh start thread begins processing 824 its
work unit. When the work unit is complete, the fresh start
thread proceeds to the “wait to commit” state 826, where it
may wait to commit the work performed at step 824. In
general, a thread will wait at the “wait to commit” state 826
until its commit token 706 is set to a value that equals its ATN.
When its commit token 706 equals its ATN, the thread will
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exit the “wait to commit” state 826 and commit 832 its work
unit. Assuming the commit succeeds, the fresh start thread
will set 834 the commit token 706 of the next thread to the
fresh start thread’s ATN value plus one. This will allow the
thread with the next ATN value to commit its work unit. In this
way, threads will be committed in order. After setting the
commit token 706 of the next thread at step 834, a thread will
proceed back to step 804, where it will receive a new work
unit and associated ATN. If no work unit is available, the
thread will proceed to the end state 805.

If, while processing its work unit at step 824, a thread
experiences a conflict that causes a hardware interrupt to be
generated and sent to the kernel 828, the thread will terminate
processing (i.e., abort) and set 828 its “abort” flag 708. The
thread will then return to the “wait to start” state 806 where it
will wait to break out and receive a new speclD, thereby
allowing it to retry its work unit. Similarly, if a thread at step
832 fails to commit its work unit, the thread will abort, set 836
its “abort” flag 708, and return to the “wait to start” state 806.

Similarly, while a thread waits to commit at step 826, the
thread may be invalidated by another thread. For example, an
oldest aborted thread may invalidate all threads younger than
the oldest aborted thread to ensure that threads are restarted
and committed in order. If, while waiting at the “wait to
commit” state 826, a thread determines that its specID has
been invalidated (see step 830), the thread will abort, set 836
its “abort” flag 708, and return to the “wait to start” state 806
where it may wait to retry its work unit.

To understand what occurs when one or more threads abort
and return to the “wait to start” state 806, consider a scenario
involving five threads: Ty, T, T,, T, and T,. For the sake of
example, assume that thread T, successfully completes its
work unit, whereas threads T, T,, and T receive spec IDs but
abort prior to committing their work units. Further assume
that thread T, has not yet received a specID. In this example,
thread T, would be the oldest aborted thread.

Under this scenario, assume that thread T, aborts and
returns to the “wait to start” state 806. After passing through
steps 902, 906, 910 illustrated in FIG. 9, thread T, will deter-
mine that it is the oldest aborted thread when thread T, sets
T,’s commit token equal to its ATN. Thread T, will then set
904 its “oldest abort” flag 710, thereby asserting itself as the
oldest aborted thread. Thread T, will also set 908 the high-
priority request 714 to its hardware thread ID and invalidate
younger threads T, and T, thereby causing these threads to
abort and return to the “wait to start” state 806 (assuming they
have not already aborted and returned to the “wait to start”
state 806 on their own). Upon invalidating younger threads T,
and T;, thread T, sets its YTK flag 712 to indicate that the
younger threads have been invalidated.

Atthis point, threads T, T, and T, will all be waiting at the
“wait to start” state 806 to retry their work units. Assume that
thread T,’s local allocation token 702 is set to a value differ-
ent from its previous local allocation token 704, thereby
allowing T, to break out of the “wait to start” state 806. Upon
breaking out of the “wait to start” state 806, T, will observe at
step 808 that the high-priority request 714 is set to a value
other than -1. Thread T, may then determine 810 whether it
is the hardware thread identified in the high-priority request
714. If it is not the thread identified in the high-priority
request 714 (which is the case in this example), thread T, sets
the local allocation token 702 of the thread (in this example
T,) identified in the high-priority request 714 to the value of
its (i.e., T,’s) local allocation token 702 plus one. This will
allow thread T, to break out ofthe “wait to start” state 806 and
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receive 816 a specID. Thread T, will then return to the “wait
to start” state 806 and wait for its turn to receive a specID and
process its work unit.

When thread T, observes at the “wait to start” state 806 that
its local allocation token 702 is different from its previous
local allocation token 704, and its “oldest abort” flag 710 is
set, T, will break out. T, will then observe 808 that the high-
priority request 714 is set to its hardware thread ID. T, will
clear the high-priority request 714 (by setting the high-prior-
ity request 714 to —1). Thread T, will then proceed to receive
aspeclD. Since T is the oldest aborted thread, it begins a new
generation of allocation tokens by setting 822 the local allo-
cation token 702 of thread T, to its (i.e., T, s) local allocation
token 702 plus the threshold value 716 previously discussed.

When thread T, sees that its local allocation token 702
minus its previous local allocation token 704 is greater than
the threshold value 716, it will break out from the “wait to
start” state 806 and receive 816 a specID. Thread T, will then
set the local allocation token 702 of thread T, to the local
allocation token 702 ofthread T, plus one. Thread T; will then
see that its local allocation token 702 minus its previous local
allocation token 704 is greater than the threshold value 716. In
response, thread T will break out of the “wait to start” state
806 and receive a spec ID. Thread T, will then set the local
allocation token 702 of thread T, to the local allocation token
702 of thread T plus one. Thread T, will then break out from
the “wait to start” state 806 since its “abort” flag 708 is not set
and its local allocation token 702 is not equal to its previous
local allocation token 704. Thread T, may alternatively break
out because its local allocation token 702 minus its previous
local allocation token 704 is greater than the threshold value
716. In any event, thread T, receives a specID and passes the
allocation token back to thread T,, assuming that there is
more work to do.

As can be observed from the discussion above, the break-
out condition 914 successfully synchronizes fresh start
threads as well as aborted threads (i.e., threads with their
“abort” flags 708 set). The breakout condition 914 is further
configured to identify the oldest aborted thread so that
younger threads can be invalidated.

Other features of the state diagram 800 illustrated in FIG. 8
are worth noting. For example, an “msync” (memory syn-
chronize) is performed at step 814 following the clearing of
the high-priority request 714 (i.e., setting the high-priority
request 714 to —1). This msync is performed so that all threads
in the system observe the clearing of the high-priority request
714 betore the allocation gets passed to the next thread (by
setting the next thread’s local allocation token 702). This is
because if the next thread falsely observes that the high-
priority request 714 is set, the next thread may immediately
pass the allocation back to the current thread, thereby causing
deadlock. In some computing architectures (e.g., Power PC
Architectures) an “isync” (instruction synchronize) may need
to be performed at the start of step 808 to ensure that the
high-priority request 714 is loaded from memory after exiting
the process 900. The is because the Power PC Architecture
has the ability to out-of-order execute a load from memory.
The isync instruction acts as a fence to prevent this from
occurring.

Another feature worth noting is that, in the state diagram
800, the oldest aborted thread is configured to clear the high-
priority request 714 at step 814. This is because all other
threads may have already passed the allocation point and, as
aresult, the oldest aborted thread needs to set as well as clear
the high-priority request 714. If there is another younger
thread in the system that acknowledges that the high-priority
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request 714 is set by passing the allocation token back to the
oldest aborted thread, the oldest aborted thread should also
clear the high-priority request 714.

Like the state diagram 600 illustrated in FIG. 6, the illus-
trated state diagram 800 reduces or eliminates the need for
atomic operations. All updates to variables are performed by
a single thread. This eliminates the need for shared locks on
particular variables as well as prevents races thereon.

The block diagrams in the Figures illustrate the architec-
ture, functionality, and operation of possible implementations
of systems, methods, and computer-usable storage media
according to various embodiments of the present invention. In
this regard, each block in the block diagrams may represent a
module, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some
alternative implementations, the functions discussed in asso-
ciation with a block may occur in a different order than
discussed. For example, two functions occurring in succes-
sion may, in fact, be implemented in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams, and combina-
tions of blocks in the block diagrams, may be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The invention claimed is:

1. A method for efficiently rolling back and retrying con-
flicted speculative threads in symmetric-multiprocessing
(SMP) environments, the method comprising:

detecting an aborted thread at runtime;

determining whether the aborted thread is an oldest aborted

thread;

in the event the aborted thread is the oldest aborted thread,

setting a high-priority request for allocation to an abso-
lute thread number assigned to the oldest aborted thread;
detecting that the high-priority request is set; and

in response to detecting that the high-priority request is set,

modifying a local allocation token of the oldest aborted
thread, wherein the modification prompts the oldest
aborted thread to retry a work unit associated with its
absolute thread number.

2. The method of claim 1, wherein detecting that the high-
priority request is set comprises detecting by a thread other
than the oldest aborted thread.

3. The method of claim 1, wherein modifying the local
allocation token comprises setting the local allocation token
to a value different from a previous local allocation token of
the oldest aborted thread, wherein the difference prompts the
oldest aborted thread to retry the work unit associated with its
absolute thread number.

4. The method of claim 1, further comprising aborting all
threads younger than the oldest aborted thread that have not
already been aborted.

5. The method of claim 4, wherein aborting all threads
younger than the oldest aborted thread comprises invalidating
speculative identifiers of all threads younger than the oldest
aborted thread.

6. The method of claim 1, wherein allowing the oldest
aborted thread to retry comprises assigning a new speculative
identifier to the oldest aborted thread.

7. The method of claim 1, wherein determining whether the
aborted thread is an oldest aborted thread comprises deter-
mining whether a local commit token of the aborted thread is
equal to the absolute thread number of the aborted thread.
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